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The property of being the implementation of a computational structure has been argued to be vacuously instantiated. 
This claim provides the basis for most antirealist arguments in the field of the philosophy of computation. Standard 
manoeuvres for combating these antirealist arguments treat the problem as endogenous to computational theories. 
The contrastive analysis of computational and other mathematical representations put forward here reveals that the 
problem should instead be treated within the more general framework of the Newman problem in structuralist 
accounts of mathematical representation. It is argued that purely structuralist and purely functionalist accounts of 
implementation are inadequate to tackle the problem. An extensive evaluation of semantic accounts is provided, 
arguing that semantic properties are, unlike structural and functional ones, suitable to restrict the intended domain of 
implementation of computational properties in such a way as to block the Newman problem. The semantic hypothesis 
is defended from a number of recent objections. 
 

 

1. Introduction 

Computational structures, such as finite state automata or Turing machines, are a 

particular kind of mathematical structures.1 Like many other classes of mathematical 

structures, they have been used to represent some aspects of the physical world. Just as 

magnetic and electric radiations are believed to belong to a common genus, thanks to the 

fact that they are all instantiations of Maxwell’s equations, digital computers of the same 

type are thought to belong to a common genus thanks to the fact that they are all 

implementations2 of the same computational structure.  

                                                
† I am indebted to Andrea Bianchi, Peter Clark, Carl Hoefer, the editors of the LSE Philosophy Papers, and 
two anonymous referees for useful comments and interesting discussions on previous drafts of this paper. 
An ancestor of this paper was presented at the LOGOS talks at the University of Barcelona (Spain), thanks 
to the audience for their comments.  
 

1 In particular, they can be argued to belong to a restricted subclass of mathematical dynamical systems. 
These are abstract structures represented by triplets of the form:  , where T is the time set, M 
is the state space and  is the set of state transitions .  Abstract computational systems can be 
argued to belong to this class of mathematical structures. The following is an example of how this can be 
proved in the case of Turing machines (see M. Giunti 1995). The future behaviour of a Turing machine is 
determined when 1) the state of the internal control unit, 2) the symbol on the tape scanned by the head and 
3) the position of the head, are given. It is therefore possible to take the set of all triplets <state, head-
position, tape-content > as the state space M of the system; the set of non-negative integers can be taken as 
the (machine) time set T; the set of quadruples of the machine is then used to form the set  of state 
transitions. Each state transition function is such that  is the identity function on M, and 

. Similar considerations apply to all other computational structures.   
 
2 Following a standard use, the term “implementation” here denotes specifically the realization of 
computational structures. When referring to the realization of generic mathematical structures (not 
necessarily computational), I shall use the term “instantiation”.   



The relatively uncontroversial and successful use of computational concepts in the 

fields of computer science, engineering, and, not least, in the sciences of the mind, 

suggests that computational properties are objective (i.e. not dependent on our purposes 

or on other observer-dependent factors). Just as the solar system instantiates a certain 

mathematical dynamical system whether or not anyone interprets it as doing so, a 

computer would be such, according to this realist construal of computational properties, 

even if no one ever so interprets it, or even if no observer had ever existed. If 

computational properties were not real - this brand of no-miracles argument goes - how 

could computational theories be so successful at modelling and predicting the behaviour 

of certain systems? Whence do they derive their explanatory power? 

Realism about computational properties, however, has been challenged on various 

grounds. Several attempts to pin down the necessary and sufficient requirements for a 

system to realize computational properties turned out to place observer-relative 

constraints.3 Antirealist arguments typically aim at showing that standard accounts of 

implementation either fail to describe all paradigmatic computing systems as computing, 

or else they fail to describe only computing systems as computing.  

These results come in two varieties. According to strong antirealist arguments, 

computational properties are vacuously instantiated by any physical system. I. Hinkfuss, 

for example, imagined a transparent plastic pail of spring water sitting in the sun and 

asked himself if the activity of such a system, given some suitable correspondence rules, 

wouldn’t be complex enough as to realize the program that underlies a human mind (see 

Lycan 1981: 39). J. Searle famously argued that, under a suitable interpretation, his wall 

implements the Wordstar program (Searle 1992: 209). In the appendix to his book 

Representation and Reality (1988), Putnam proposed a now (in)famous argument to the 

effect that every open physical system implements every inputless finite state automaton.4 

The soundness of these vacuousness arguments has been challenged (see for example 

                                                
3 Attempts to ground the notion of implementation on that of step satisfaction (see for example Cummins 
1989: 91-92), for instance, or on the digital vs/ analog distinction (see Haugeland 1981), or on the 
instantiation of fundamental vs/ derivative physical laws (Block and Fodor 1972) have all been argued to 
fail to make a case for computational realism. For an extensive survey of the various proposals and of their 
shortcomings see Shagrir (1997). 
4 The technical result, moreover, has been argued to be extendable to the claim that any open physical 
system implements any automaton. An argument to this effect can be found in Scheutz (1999). 
 



Chalmers 1996, Copeland 1996 and Piccinini 2007b), but there is nothing like an 

agreement as to whether the proposed amendments to the definition of implementation 

succeed at blocking them.  

According to weak antirealist arguments, even if computational properties are not 

universally instantiated, theories of implementation are still too liberal in ascribing 

computational properties to physical systems. Recently, O. Shagrir has forcefully argued 

that in some cases a computing physical system, short of semantic constraints on its 

inputs and outputs, can be seen as implementing incompatible computational structures.  

The purpose of this paper is to put forward a general diagnosis for the problem of 

excessive liberalism, based on a contrastive analysis of computational and other 

mathematical representations of reality. Standard manoeuvres for combating the alleged 

vacuousness of implementation treat the problem of liberalism as endogenous to 

computational theories. My analysis, instead, allows us to place the problem within the 

overarching framework of structural accounts of mathematical representations of physical 

properties, where it is argued to belong, and where a solution to it can be envisaged.  

Why are computational properties exposed to vacuousness arguments? Where does 

this unwanted liberalism come from? Why do other mathematical representations of 

reality, such as those used in physics, appear to be immune to this disease?  

The source of unwanted liberalism in the ascription of computational properties, I 

shall argue, is the wanted amount of liberalism. Unlike what happens with the 

instantiation of other physical properties, one of the chief desiderata of any account of 

implementation, in fact, is that it must make room for the principle of multiple 

realizability (PMR henceforth): different implementations of the same computational 

structure need not share any particular kind of (first- or second-order) physical 

properties. A computer, says Johnson-Laird, “could be made out of cogs and levers […]; 

it could be made out of a hydraulic system through which water flows.” [Johnson-Laird 

(1988): 39]. A complex of logical gates, observes N. Block, could be realized by a system 

of cats, mice and cheese, where the cats would strain their leashes and open gates in 

accordance with the rules of the computation to be implemented. According to Pylyshyn 

“a group of pigeons [could be] trained to peck as a Turing machine” [1984: 57]. “We 

could be made of Swiss cheese and it wouldn't matter” [Putnam (1975): 291] 



What counts, in other words, is the causal structure, not the particular properties that 

realize it. This desideratum, i.e. the requirement that the constraints placed on a physical 

system for it to be computing satisfy the PMR, constitutes one of the chief allures of 

computational representations of reality; unfortunately, it turns out to be the most 

difficult to satisfy within a realist perspective. 

How do we ever manage, in general, to build a non vacuous metaphysical bridge 

between abstract, mathematical structures and empirical ones? Why can’t we argue that 

Newton’s law of gravity, or Fresnel's equations, are vacuously instantiated? 

As we shall see, all mathematical representations of reality, including as a 

consequence also computational representations, are subject to the problem of excessive 

liberalism, when the burden of fixing the wanted models is left to structural isomorphism 

alone. This problem, also known as Newman’s problem, does not arise in cases where we 

are able to specify the intended domain of physical properties in the represented domain. 

In the case of computational theories, however, this property-specific route to the 

elimination of unwanted models is a-priori blocked by the need to comply with the 

principle of multiple realizability.  

 In the literature there are three main strategies for fixing the intended models of 

computational theories. They can be classified in terms of the kinds of properties that are 

proposed to restrict the candidate bearers of computational properties. Accordingly, there 

are structuralist, functionalist, and semantic (or intentional) accounts of implementation, 

characterized respectively by the assumptions that computational states must be 

individuated by their structural, functional or semantic properties. The main thesis of this 

paper is that only a restriction of the intended domain represented by computational 

structures to intentional items (i.e. to states and groupings of states that instantiate 

semantic properties, such as content) allows us to block unwanted implementations. 

The structure of the paper is as follows. In section 2 I put forward a contrastive 

analysis of the problem of liberalism. I argue that the problem of liberalism is not 

restricted to computational theories, but derives from a general problem of purely 

structuralist accounts of mathematical representations of reality (Newman’s problem).  

In section 3 the analysis is applied to structuralist theories of implementation. It is 

argued that standard property-specific combating manoeuvres against the problem of 



liberalism are not available to computational theories. These must therefore seek to 

restrict their intended domains in non-structural and non property-specific ways. 

In section 4 I provide an evaluation of functionalist accounts of implementation, 

arguing that functional properties (both of the narrow and of the wide variety) are also 

unsuitable to tackle the problem of liberalism. 

In section 5, finally, I provide an extensive evaluation of semantic accounts, arguing 

that semantic properties are, unlike structural and functional ones, suitable to restrict the 

intended domain of implementation of computational properties. The semantic hypothesis 

is defended from a number of recent objections.     

 

2. Structuralist  representations of physical reality 

 

The instantiation of mathematical structures in physics is prima facie immune from 

vacuousness arguments. The reason appears to be that in that case we are allowed to 

make reference to specific physical properties and magnitudes. Consider for example the 

case of Fresnel's equations, describing the propagation of light through a plane reflecting 

surface: . In their intended interpretation  and  refer to the angles made 

by the incident and the refracted beams with the normal to the surface, while R and I, in 

Fresnel's understanding, refer to the amplitude of the vibration of the molecules of ether 

induced respectively by the reflected and by the incident beam. Being the intensity of a 

beam of light is a property that is certainly not universally instantiated, let alone by a 

piece of Swiss cheese! The angles made by the incident and refracted beams, or the 

intensities of the beams (proportional respectively to  and ), are magnitudes specified 

unambiguously by repeatable measurement procedures. In this sense, these properties can 

be broadly construed as “observational”, in that they reliably produce expected effects in 

angular translators and photometers. 

If it wasn’t for these restrictions on the interpretations, the above equation would not 

represent Fresnel’s law. Suppose that  and  in the equation above did not refer to the 

angles made by the incident and a refracted beam, suppose that we were free to interpret 

them as we please, or that the field of science under theorizing was not even specified: 



couldn’t we then cook up some antirealist argument to the effect that Fresnel's equations 

are vacuously instantiated?  

As a matter of fact, we could. We need not go too far for entertaining conjecture of 

such a scenario. When mathematical structures are used to model a domain of 

unobservable properties, which, unlike angles and intensities, are not directly specifiable 

through measurement procedures, they can also be argued to fail to capture only the 

wanted models. In these cases, we shall see, the represented domain must be restricted by 

suitable semantic postulates, if the theory is to avoid vacuousness.  

While the interpretation of the variables  and  in Fresnel’s equations is 

constrained by specific measurement procedures (those relative to the observable 

intensities of the refracted and of the incident beam), the variables R and I do not refer to 

any directly observable magnitude. In Fresnel’s own interpretation, for example, they 

referred to the (unobservable) amplitude of the vibrations of the molecules of ether. 

Fresnel’s ontological interpretation of his equations, which construed light as consisting 

of vibrations propagating through the all-pervading ether, has been notoriously falsified: 

ether does not exist! The structure of Fresnesl’s theory, including his equations, however, 

survived this ontological revolution, to reappear, unchanged, in Maxwell’s theory, and 

even in the following relativistic theory. The only difference is that, according to 

Maxwell’s ontological interpretation, it is the (equally unobservable) electric and 

magnetic field strengths that vibrate, not the molecules of ether: the interpretation of the 

other variables in the equations (those that refer to observable magnitudes), is left 

unaltered. 

 “Fresnel’s equations”, observes J. Worrall, “are taken over completely intact into the 

superseding theory – reappearing there newly interpreted but, as mathematical equations, 

entirely unchanged”. [Worrall (1996): 160, my emphasis]. According to this structuralist 

intuition, Fresnel was right, after all, about the fact that something was vibrating with a 

certain amplitude, at certain angles, although he did not, and could not know anything 

about the nature of that something. Concentrating on the reality of structure, rather than 

on that of the (unknowable) relata, allows us to create a safe niche for philosophers with a 

residual realist inclination: if the unobservable relata are unknowable, think the structural 



realists, the structure of their relations is knowable and constitutes the true content of 

scientific theories.  

The sole relation between mathematical structures and reality that is required to be in 

place, in these cases, is that provided by structural isomorphism. In the case of Fresnel’s 

equations, the isomorphism consists of a mapping from the values of some unspecified 

(and unspecifiable) magnitudes to the values of the variables in the abstract mathematical 

structure.  

This philosophical manoeuvre is captured by the well know procedure of 

Ramseyfication. If we describe a theory by the formula , where 

 are observational or perceptual terms, and  are theoretical terms (those 

that purportedly refer to the unobservable properties), the structural realist claims that the 

“true” empirical content of the theory is represented by the Ramsey sentence: 

.  

Here enters the spectre of vacuousness. It is widely acknowledged, in fact, that “there 

are just too many isomorphisms, and all of them are equally good representations, if 

representation cannot ‘cut through’ isomorphism. In fact there are two problems here. 

Firstly, qua structure, there is nothing to distinguish a data-model of the simple periodic 

motion of a pendulum from that of a suitably-described economic cycle. Secondly, even 

when the subject of the model is fixed, we can define a relational structure on its subject 

domain, cardinality permitting, in such a way as to guarantee isomorphism.” [S. Psillos 

and R. Hendry 2007: 149]. We shall call absolute liberalism the first kind of unwanted 

liberalism, i.e. that which derives from not having specified the subject domain of the 

model. The second kind of liberalism, which derives from not having specified the way in 

which a specific subject domain should be carved, shall be called relative liberalism. 

The moral I wish to draw from the vacuousness of purely structuralist accounts of 

mathematical representation, I anticipate, is the following. First, the problem of 

vacuousness (or of excessive liberalism) is not endogenous to computational theories, but 

it is common to all purely structuralist accounts of mathematical representation. 

Secondly, standard combating manoeuvres, which entail a resort to specific context-

fixing physical properties, are not available in the case of computational properties. I 

shall argue, in other words, that any use of mathematical structures for representing 



reality would be subject to the same antirealist arguments, if it had to accommodate for 

the unrestricted PMR. Only an a-priori restriction of the intended implementing medium 

has any chance of capturing just the correct amount of liberalism in these cases. 

The mathematical representation of computational structures, hence the explanatory 

power of computational theories, stands in exactly the same position. In the case of 

Fresnel’s law, the domain of unobservable entities over which we define the isomorphism 

that ought to ground the relation of instantiation, is unspecified for epistemological 

reasons: nothing can be assumed to be known about it aside from structure. In the case of 

structuralist accounts of implementation, instead, the implementing domain is unspecified 

for reasons intrinsic to the notion of computation, i.e. because of the requirement that 

implementation be indifferent to any particular physical property: nothing should be 

known about it, aside from structure.  

The different reasons why the respective instantiating domains are unspecified, 

however, are irrelevant for our discussion. What counts is that in both cases an 

unspecified domain, of which only the structure is supposed to be known, is required to 

carry the burden of instantiation (implementation), with the sole aid of isomorphism. In 

both cases, in fact, the knowledge that a physical system realizes a given mathematical 

structure does not elicit any inference about its particular physical nature.  

The alleged vacuousness of purely structural properties, a difficulty also known as 

Newman’s problem, has always been one of the major puzzles for structural realist 

philosophers of science. At the heart of it lies the observation that “any collection of 

things can be organized so as to have the structure W, provided that there are the right 

number of them. Hence the doctrine that only structure is known involves the doctrine 

that nothing can be known that is not logically deducible from the mere fact of existence, 

except (“theoretically”) the number of constituting objects”. [Newman (1927): 144].  

This critical remark was originally addressed to B. Russell’s causal theory of 

perception. In his book The Analysis of Matter, Russell expressed the opinion that the 

only kind of knowledge that we can have of the unperceived causes of our perceptions is 

“structural”: i.e. knowledge of the structure of causal relations that obtains between them. 

But of such a structure, Newman objected, “nothing is known (or nothing need be 



assumed to be known), but its existence”. [ibid.: 144] Russell later conceded that this is 

indeed the case. 

Any structuralist account of the relation between mathematical structures and the 

empirical systems that instantiate them, including of course that between computational 

structures and their implementing systems, must address Newman’s problem. The 

unperceived causes of our perceptions (and their structure thereby), just as the 

unobservable properties postulated by physical theories, or like the unspecified properties 

that implement computational structures, cannot be uniquely represented if the only 

relation they have with their potential representations is supposed to be the existence of 

an isomorphic mapping.  

There is an ongoing debate about how to best amend structuralist accounts to meet 

Newman’s challenge, and a close scrutiny of the various options offered falls outside the 

scope of this paper. Here it suffices to mention that virtually all commentators agree on 

the following point. The way out of Newman’s problem requires that “[t]o the general 

characterisation of theories in terms of state-space structure we must add other 

information […] and that information imposes further constraints on the domain that can 

possibly be represented by the structure. The theoretical variables for which the 

simultaneous values and their change are given by the structure are theoretically 

interpreted: they refer to physical properties and relations.” [French & Saatsi (2006): 

557, my emphasis]. While opinions differ as to what this “other information” should 

amount to, there is agreement about the fact that, if the theory is to avoid vacuousness, 

such information must at least partially constrain the particular domain of physical 

properties intended to be represented. 

Let me be a bit more specific about how a structural realist can try to avoid the 

vacuousness result.  The first order variables of our theory  are divided into two sorts, 

those ranging over observable entities and those ranging over unobservable entities. The 

predicates, instead, are divided into three sorts: (1) those whose extension is drown 

entirely from the observational domain, (2) those whose extension is drown entirely from 

the unobservable domain and (3) those whose extension is mixed. Now, Newman’s 

problem arises only if we presuppose that the structural realist proceeds to Ramseyfy 

away all non observational properties. Thus, for example, the property “has a mass”, 



which belongs to the third mixed sort of properties, should be Ramseyfied away wherever 

it applies to unobservable entities, such as electrons. It is only so that the theoretical 

predicates of a scientific theory can be gerrymandered, and that a successful vacuousness 

argument can go through.  

Having said that, it is by no means easy to find out how the structural realist should 

go about restricting the quantifiers. Several proposals have been put forward: these 

include restricting quantification to natural, intrinsic, causal, contingent, qualitative or 

intensional properties.5  As I said, however, here we are only interested in pointing out 

that a solution to the problem must involve some restriction of the intended domain of 

mixed properties. Any proposed restriction will have to pass a double test: (1) it will have 

to be such as to block unwanted models without (2) exceeding on the chauvinist side of 

the dilemma.    

 

3. Structuralist accounts of implementation 

 

According to structuralist accounts, a physical system realizes a computation if the 

computation mirrors its causal structure. The key notion, in this understanding, is that of 

structural isomorphism. According to D. Chalmers, for example, “a physical system 

implements a given computation when there exists a grouping of physical states of the 

system into state-types and a one-to-one mapping from formal states of the computation 

to physical state-types such that formal states related by an abstract state transition 

relation are mapped onto physical state-types related by a corresponding causal state 

transition relation” [Chalmers (1996): sec. 2]. The prima facie allure of this 

understanding is precisely that reference to the specifics of the intended relata is 

abstracted away in favour of their causal structure, thus making room for the PMR.  

Let us take a closer look at how this account is supposed to work in the particularly 

simple case of finite state automata. At the abstract, mathematical level, computations are 

defined as structures that take strings of letters from a finite alphabet and manipulate 

them according to specified rules to output other strings of letters. An automaton, for 

example, is specified by three sets X, Y , and Q, and two functions δ and β, where: 
                                                
5 See J. Melia and J. Saatsi (2006) for an extensive discussion of the various options. 



 

1. X is a finite set (the input alphabet) 

2. Y is a finite set (the output alphabet) 

3. Q is the set of internal states 

4. , the next state function, is such that if at any time t the system is in 

state q and it receives input x, then at time t+1 the system will be in state . 

5. , the output function, is such that when the system is in 

state q it always yields output . 

 

An account of implementation must specify how these abstract symbols should be 

interpreted if the structure is to represent some real property of the physical systems that 

realize it. According to structuralist accounts, a physical system (P) implements an 

automaton (A) if there exist (in P) specifiable input-, output- and internal states that 

satisfy the following (structural) properties. There exists a mapping (f) that maps the 

internal states of P (QP ) to abstract internal states of A (QA) in such a way that for every 

abstract state transition , if P is in internal state  and 

receives input  where  and , this causes it to enter state   and to 

output  such that  and   [Chamers 1996: 393. My emphasis]. 

It is easy to see that this account proceeds from a Ramseyfication of computational 

statements. The empirical content of a computational theory that ascribes to a physical 

system the property of implementing A, in fact, is reduced to a conjunction of 

existentially quantified properties that “mirror” its formal structure. As we have seen, if 

no restriction is placed on these properties, “[t]he problem is that this procedure 

trivializes [the theory]: it threatens to turn the empirical claims of science into mere 

mathematical truths. More precisely, if our theory is consistent, and if all its purely 

observational consequences are true, then the truth of the Ramsey-sentence follows as a 

theorem of set theory or second-order logic, provided our initial domain has the right 

cardinality- if it doesn't, then the consistency of our theory again implies the existence of 

a domain that does.” [Demopulos and Friedman (1985): 635]   

To overcome Newman’s problem, we said, it is necessary to add “further constraints 

on the domain that can possibly be represented by the structure”. This standard 



combating manoeuvre, however, is not available in the case of structuralist accounts of 

implementation, for the variables featuring in computational structures, those that stand 

for abstract computational inputs, outputs and states, cannot be (a-priori) theoretically 

interpreted as referring to (specific) physical properties and relations, on pain of violating 

the PMR.   

Here is an example of the difficulty that structuralist accounts of implementation must 

face when confronted with Newman’s problem. According to Copeland’s structuralist 

account, the relation between computational structures and their implementations is akin 

to that between formal theories and their models. It may be conceded, thinks Copeland, 

that there are interpretations under which a given physical object, Searle's wall, for 

example, is implementing the Wordstar program; but, it is argued, this is not the case 

under the intended interpretation: “[t]he wall so acted”, says Copeland, “only if the 

referent of ‘R’ in Skolem's countable model is uncountable!” [Copeland (1996): 353]. 

But, I argue, if we didn't have any prior (metatheoretical) information about the intended 

meaning of ‘R’ in a theory of real numbers (e.g. about its real cardinality), there would 

be no way to discriminate away Skolem's countable model as non intended.6 Likewise, if 

we are not allowed to specify any particular non-structural property of the intended 

model, how is Copeland’s wall supposed to “know” that, unlike Searle’s, it is not 

intended to implement the Wordstar program?  

By way of explicating this metaphor, it is interesting to briefly turn our attention to 

Skolem's own opinions about the philosophical consequences of the apparent paradox. In 

his 1922 paper (where he first introduced the paradox), Skolem claimed that 

“axiomatizing set theory leads to a relativity of set-theoretic notions, and this relativity is 

inseparably bound up with every thoroughgoing axiomatization” [Skolem 1922, p. 296]. 

Driven by widespread intuitions at the time of his writing, moereover, he was skeptical 

about any alternative “naive reasoning with sets”, wich of course included any intuitive, 

non-algebraic interpretation of axiomatic set thoery. As the best option on offer, i.e. the 

implicit definition of set-theoretic notions via axiomatization, made some of them relative 

(such is the case for example of “x is uncountable”), he concluded that set-theory could 

not provide us with a suitable “foundation for mathematics”.  

                                                
6 Cantor's theorem is of course true also in Skolem's countable model. 



Now, to return to Copeland’s metaphor, it is clear that a thoroughgoing structural 

account of implementation, for similar reasons, leads to a relativity of computational 

notions: unwanted models cannot be skeemed off by adding further structural constraints. 

So, I argue, those who believe that structural accounts are the best game in town, must 

either show that there are no unwanted models, or bite the bullet and axcept that virtually 

everything implements too many computations.  

The restrictions imposed by the PMR on the possible specifications of the 

implementing mediums act on two levels on abstraction. At the most abstract level they 

require that absolutely any kind of physical property should, a priori, be a viable 

candidate for implementing a given computational state. This kind of liberalism, that we 

have called absolute liberalism, opens the way to strong antirealist arguments (those to 

the effect that any computational structure is instantiated by any physical object). These 

arguments, in fact, exploit the possibility, in constructing the relevant groupings, to 

choose among the huge variety of physical properties instantiated by any macroscopic 

object. Putnam's own diagnosis of the problem of vacuousness, for example, points at the 

need to “restrict the class of allowable realizers to disjunctions of basic physical states 

[...] which really do (in an intuitive sense) have something in common”. [Putnam (1988): 

100]. According to the view defended in this paper, this “something in common” consists 

in sharing the same representational properties. 

As I have mentioned in the introduction, some authors argued that adding the right 

kind of structural complexity allows one to block the vacuousness arguments. For the 

purposes of my argument, however, we do not need to settle that issue here. The scope of 

the objection that is being raised here, in fact, is much more general, having to do with 

the nature of mathematical representations of physical reality, rather then with some 

idiosyncratic feature of computational properties. One of the advantages of framing the 

problem of liberalism within the context of Newman’s problem, is that one needs not 

delve into the details of vacuousness arguments specifically designed for the case of 

implementation. Any mathematical structure can be seen to be vacuously instantiated if 

the relevant properties are Ramseyfied away (see Ketland 2004 for a detailed 

formalization of Newman’s problem). Computational structures, we said, are a particular 

kind of dynamical systems (see footnote 1). It would be surprising indeed if Newman’s 



problem could be blocked in the discrete case of computational structures, when it has 

proved to be recalcitrant to structuralist solutions even in the continuous case of 

Maxwell’s equations. This of course does not prove that Putnam and Searle’s arguments 

are sound, but it provides us with some a-priori evidence that they can be amended so as 

to resurrect the vacuousness challenge.  

Moore (1990) has argued that a universal Turing machine could be implemented by 

the motion of a single particle moving in space, bouncing between parabolic and linear 

mirrors like an ideal billiard ball. While this result cannot be used to argue that anything 

implements a universal Turing machine, it certainly gives us a glimpse of the surprising 

variety of unexpected ways in which a computational structure could be implemented.  

Some further evidence to the same effect is provided by the fact that, even once a 

certain kind of property, say electric voltage, is selected as the relevant candidate kind of 

implementing property, there still remains a degree of unwanted arbitrariness as to how to 

build the groupings of values that are to be mapped onto abstract computational states. 

Weak antirealist arguments typically exploit relative liberalism, i.e. the possibility to 

group arbitrarily physical states within the selected class of candidates. M. Scheutz, for 

example, observes that “if no restrictions are imposed on groupings of physical states, 

then simple, finite, deterministic physical systems […] can possibly be seen to implement 

complex, infinite, and non-deterministic computations.” [Scheutz (2001): 551].  

In a number of recent publications, O. Shagrir (2001; 2007) has proposed a 

compelling example of the under-determination of implementation that also exploits this 

second level of arbitrariness. It is worth presenting it briefly. Consider a device that 

receives 0-100 mV inputs from two channels, and emits voltages within the same range 

from an output channel. Suppose further that the device emits 50-100mV signals just in 

case it receives 50-100mV signals on both input channels and it emits 0-50mV signals 

otherwise. It would be tempting to assign “0” as a label to 0-50mV signals (input and 

output), and the label “1” to 50-100mV signals. Under this assignment, the structuralist 

would be ready to say that the device is implementing an AND gate. Now, without 

changing these assumptions, suppose further that the device emits 0-25mV when it 

receives 0-25mV signals on both channels, and 25-50mV when it receives 25-50mV on 



both channels. Assigning the label “0” to 0-25mV signals and “1” to 25-100mV signals, 

the very same device can be seen as implementing an OR gate. 

Let me summarize what was said so far. On one side, the need to tackle Newman’s 

problem forces any structuralist account of instantiation (including structuralist accounts 

of implementation) to suitably restrict the candidate domain of instantiating properties (in 

order to avoid vacuousness, or excessive liberalism). On the other side, the PMR, in the 

case of implementation of computational structures, places constraints to what these 

restrictions should amount to. In particular, such restrictions should not make reference to 

any specific domain of physical properties.  

The computational realist, in other words, must face the following insidious dilemma. 

Either (a) she introduces semantical postulates (that restrict the possible interpretations of 

the abstract structures) in the attempt to individuate only the intended models of her 

theory, thus running the risk of failing to capture all the wanted models; or (b) she holds 

onto the structuralist view of computational theories, in the attempt to capture all the 

intended models, thus running the risk of capturing also unintended ones. This dilemma 

presents structuralist accounts of implementation with a bill that, I argue, they cannot 

afford to pay.  

As anticipated, my view is that the only viable option is to require that the candidate 

implementing states (or groupings of states) be restricted to items that instantiate 

intentional properties. Before turning to a clarification and defence of this thesis, 

however, I will discuss another option, functionalist accounts. I shall argue that they are 

just as unsuitable to meet Newman’s challenge. 

 

4. Functionalist accounts of implementation 

 

Acknowledging that structuralist accounts are unsuitable to capture all and only the 

wanted models of computational theories, some authors rely on functional analysis. After 

all, the way computational states are individuated by the relevant community of experts 

(computer scientists, hardware engineers and computational neuroscientists) relies on the 

ascriptions of functional roles to the various parts of computing mechanisms.  



Functional analyses and explanations make reference to functional properties, 

abstracting from the specifics of their implementation, and are thus prima facie suitable 

for satisfying the multiple realizability constraint. Whether something is a carburettor, or 

whether something is a heart, for example, does not depend on physical makeup: 

carburettors and hearts are what they are because of the function they serve in the overall 

mechanisms in which they are embedded (respectively combustion engines and 

circulatory systems). Similarly, whether something is a memory cell or not, or whether 

something is an input device or not, according to functionalist accounts, depends on the 

function the item has in the overall computing mechanism to which it belongs. 

Functionalist accounts of implementation, moreover, do not involve the 

Ramseyfication of computational properties, and are thus prima facie very suitable for 

tackling Newman’s problem.  

Piccinini, in a series of recent papers, has proposed a functionalist account of 

implementation according to which “the central idea is to explicate computing 

mechanisms as systems subject to mechanistic explanation. By mechanistic explanation 

of a system X, I mean a description of X in terms of spatiotemporal components of X, 

their functions, and their organization, to the effect that X possesses its capacities because 

of how X’s components and their functions are organized. […] Computing mechanisms, 

including computers”, he goes on to argue, “are mechanisms whose function is 

computing”.  [Piccinini (2007a): 506-507]. 

Although I agree with Piccinini that mechanistic descriptions play an essential role in 

computational explanations, I doubt that they can serve, alone, as a foundational basis for 

an objective notion of implementation.7 Mechanistic descriptions are notoriously 

perspectival. “Describing an item's mechanistic role”, argues Craver, “is a perspectival 

affair. This perspectival take on functional ascription should be a reminder that what we 

take as functional descriptions can be tinged in a very direct way by our interests and 

biases (see e.g., Amundson 2000; Gould 1981).” [Craver (2001): 73]. There are a number 

                                                
7 This does not contradict the thesis that functional accounts are unsuitable, alone, to ground the notion of 
implementation. The essential role played by functional, mechanistic properties in individuating the 
relevant computational properties is, I argue, a practical, not a metaphysical one. Here we are concerned 
with necessary and sufficient conditions for the implementation of computational structures. See the 
conclusive remarks at the end of this paper for a discussion of the relation that obtains between the various 
accounts of implementations presented. 



of considerations that mitigate the consequences of such relativism in many scientific 

contexts. My concern is that the peculiar nature of computational properties prevents us 

from safely applying such considerations in the case of computational mechanistic 

descriptions.    

The relevant asymmetry is this. The functional properties of an item are typically 

defined in terms of the physical effects that the item ought to yield: these effects 

contribute to explain the capacities of the whole embedding mechanism. Thus, for 

example, carburettors are defined as devices that blend air and fuel for an internal 

combustion engine, and hearts are defined as organs that pump blood in blood vessels. 

Although both carburettors and hearts can be made of different stuff, the effects that they 

(ought to) yield are characterized by making reference to specific physical properties, or 

at least to restricted disjunctions of physical properties.  

It could be argued that “blood” and “fuel” are not names of natural kinds: not all 

bloods, for example, use haemoglobin to carry oxygen; and not all fuels share the same 

chemical composition. But whether a fluid carries oxygen or whether it enters a 

combustion cycle as fuel, are objective matters of fact specified by the relevant classes of 

physical phenomena. Thus, as Craver observes, “[t]he heart cannot expel blood […] 

without blood, and the expulsion of blood will only circulate it […] if the veins and 

arteries are appropriately organized.” [Craver (2001): 64]. It is obvious that if blood was 

defined as whatever it is that is pumped by hearts, then the functional definition of hearts 

as organs that pump blood would be patently circular.  

Computational properties, I shall argue, are a-priori unsuitable for being analyzed in 

purely functional terms. Because of the PMR constraint, purely functional accounts of 

computing systems are bound to be either circular or part of an infinite regress of 

functional descriptions. The problem of individuating a physical counterpart to the 

abstract alphabet of a computational description on the sole base of its mechanistic role is 

particularly apt to expose this difficulty.  

The first task of a theory of implementation is that of providing physical counterparts 

for the letters of the abstract alphabet. The candidate physical counterparts of the 

variables in other mathematical structures, such as other mathematical dynamical 



systems, we have seen, are physical magnitudes, such as light intensity, or mass. But 

what is a candidate physical “letter”? What is a candidate physical “alphabet”?  

According to the functionalist account, a set of physical items (a state, or an entity) 

counts as an implementation of an alphabet (i.e. as the intended interpretation of X and Y, 

in our example), if and only if it functions as such for a physical system that realizes the 

appropriate transformations (i.e. the systems whose states, or groupings of states, realize 

the set Q). But what is it for a set of entities to function as a system of letters? 

According to Piccinini “[a] system of digits [i.e. physical counterparts to the letters of 

an alphabet] is individuated by the digits’ functional roles within a mechanism.”  

[Piccinini (2007a): 510] But how can we define such roles? How are the relevant parts of 

a computing mechanism to be defined?  “Input devices”, continues Piccinini, “have the 

function of turning external stimuli into strings of digits” [ibid.: 514]. The latter are then 

passed onto other processing components, that “have the function of taking strings of 

digits as inputs and returning others as outputs according to a fixed rule defined over the 

strings” [ibid.: 514]. Now, unless we add to these characterizations some necessary and 

sufficient condition for a mechanism to function that way, e.g. for a set of states to 

function as a system of digits, or for a mechanism to function as a memory cell, these and 

similar definitions are bound to be circular.   

If an item X (a set of states, a class of groupings of states, or a set of entities) is a 

system of digits if and only if its elements have the function of being output from an 

input device and input to a processing component, then an input device would be a 

mechanism that has the function of outputting the outputs of an input device (whatever 

these are). Similarly, a processing component would be defined as a mechanism that has 

the function of taking as inputs the inputs of processing components! In sum, either the 

chain of functional descriptions of the components of a computing mechanism can be 

interrupted by introducing an element characterized in terms of property-specific inputs 

and outputs, or the whole functional architecture will be trapped in a functional marry-go-

round.  

Piccinini concedes that “[t]he resulting account is not intended as a list of necessary 

and sufficient conditions, but as an explication of the properties that are most central to 

computing mechanisms.” [ibid.: 508]. But, I argue, any attempt to produce such a list 



would either make the circularities described above explicit, or it would violate the PMR 

constraint.  

Consider, for example, the following general functional constraint proposed to 

discriminate computations from other kinds of mechanisms: “[i]n a computing 

mechanism, under normal conditions, digits of the same type affect primitive components 

of a mechanism in sufficiently similar ways that their dissimilarities make no difference to 

the resulting output.” [Ibid.: 510]  

The crucial difficulty, here, is that while the difference between two inputs is a matter 

of objective fact, whether such difference also makes a difference depends on who or 

what is to notice the difference. This point was made very clearly by A. Turing in a 

seminal paper. “[D]iscrete machines”, he claims, “are the machines which move by 

sudden jumps or clicks from one quite definite state to another. These states are 

sufficiently different for the possibility of confusion between them to be ignored. Strictly 

speaking there are no such machines. Everything really moves continuously. But there 

are many kinds of machines which can profitably be thought of as being discrete state 

machines.” [Turing (1950): 36, my emphasis]. The question, of course, is: profitable to 

whom?  

The following example should help to clarify why the requirement that digits of the 

“same type” affect computing mechanism in “sufficiently similar ways” runs the risk of 

being vacuously or too liberally satisfied. “[I]f two inputs to a NOT gate”, argues 

Piccinini, “are sufficiently close to a certain voltage (labeled type ‘0’), the outputs from 

the gate in response to the two inputs must be of voltages different from the input 

voltages but sufficiently close to a certain other value (labeled type ‘1’) that their 

difference does not affect further processing by other logic gates.” [Ibid: 511] 

There are two problems here.  First, a restriction of the candidate label bearers to the 

magnitude voltage cannot be inbuilt to the notion of implementation, for familiar reasons 

(absolute liberalism). This problem is not to be considered as an exercise of armchair 

philosophy. The debated computational status of neurons is particularly apt to expose this 

difficulty. Neurons have been always considered as privileged candidates for 

implementing memory cells. It is certainly possible, in fact, for all practical purposes, to 



type-identify neurons according to whether they are activated or not. The hypothesis that 

they act as flip-flops, however, must face a number of challenges. To mention only a few: 

 

1. It is the frequency of firings within a neuron and not the mere presence of action 

potentials, that is relevant in causally influencing the behaviour of neighbouring 

ones. 

 

2. The effect of the same type of input to a neuron changes substantially depending 

on where in the receiving neuron the input is passed. 

 

3. There are properties of neurons that must be arbitrarily disregarded in order to 

treat neurons as flip-flops (e.g. facilitation, extinction and learning). 

 

What counts is whether these “deviant” properties can be neglected or disregarded  

for the purpose of computational analysis. But this depends, in the first place, on the 

choice of candidate label bearers among the variety of physical properties that neurons 

instantiate. McCulloch and Pitts, for example, were aware that there are properties that 

alter the response of neurons and that would disrupt, if taken into account, their treatment 

as bi-stable devices. Nevertheless, they thought that these properties need not disrupt the 

formal (computational) treatment of the activity of neurons: “[t]he alterations actually 

underlying facilitation, extinction and learning in no way affect the conclusion which 

follows from the formal treatment of the activity of nervous nets, and the relation of the 

corresponding propositions remain those of the logic of propositions.” [McCulloch and 

Pitts (1943): 352] 

Other authors, instead, think that the above mentioned “deviant” properties block a 

plausible treatment of neurons as binary memory cells: “[t]he principles of computer 

memories can hardy be realized in biological organisms [because] all signals in 

computers are binary whereas the neural signals are usually trains of pulses with variable 

frequency.” [Welles (1998): 200]. It is clear that purely functional considerations do not 

suffice to settle this controversial issue.  



Similarly, whether the two inputs to the NOT gate in Piccinini’s example are 

“similar”, or whether the respective responses of the mechanism are “sufficiently close” 

to each other - hence whether the mechanism in question is in fact a NOT gate - depends, 

in the first place, on what physical magnitudes are selected as candidate label bearers.  

In the second place, even if the physical domain of candidate label bearers could be 

suitably restricted, there would still remain a measure of relative liberalism that cannot be 

eliminated by adding purely functional constraints. “[E]ven a slight change in the 

grouping of a single neural property”, argues Shagrir for example, “can completely alter 

the logical operators we take the brain to implement. Under a grouping of 0-50mv neural 

activity into groups of 0-25mv and 25-50mv, the resulting logical operation is AND, but 

under a grouping into 0-15mv and 15-50mv groups, it is OR.” [Shagrir (2005): 240].  

This perspectival aspect of causal role ascriptions, when considerations that fix the 

relevant contexts are not allowed, is largely acknowledged, and is not restricted to 

computational properties.8 “Even slight differences in mechanistic context”, thinks 

Craver, “entail different mechanistic role functions. […] Judgements of ‘sameness’ in 

these cases depend upon an agreed-upon tolerance of diversity among tokens within 

types.” [Craver (2001): 73] 

Doesn’t such relativism in the ascription of mechanistic roles infect the individuation 

of computational roles that they ought to ground? Piccinini is well aware of this potential 

objection but he thinks that it can be overcome. I think it is worth considering his 

response in some detail. “Mechanistic descriptions”, concedes Piccinini, “are sometimes 

said to be perspectival, in the sense that the same component or activity may be seen as 

part of different mechanisms depending on which phenomenon is being explained (e.g., 

Craver 2001). For instance, the heart may be said to be for pumping blood as part of an 

explanation of blood circulation, or it may be said to be for generating rhythmic noises as 

part of an explanation of physicians who diagnose patients by listening to their hearts. 

This kind of perspectivalism does not trivialize mechanistic descriptions. Once we fix the 

phenomenon to be explained, the question of what explains the phenomenon has an 

objective answer. […] What we want to avoid is observers who share the same 

                                                
8 For a detailed analysis of the problem of liberalism in functionalist accounts see N. Block 1980 and A. 
Weir (2001). Weir argues that functionalist accounts based on D. Lewis’ analysis fall prey of the 
chauvinistic horn of the dilemma, while other accounts fail to block excessively liberal implementations.   



mechanistic perspective and yet ascribe different computations to the same system. Under 

the mechanistic account, this is not an option any more than it is an option for different 

observers to attribute different noises to the same heart. For example, either something is 

a memory register or not, an arithmetic-logic unit or not, etc., depending on what it 

contributes to its containing mechanism.”  [Piccinini (2007a): 516]. 

 According to this line of response, the relevant constraints come from the 

explanandum. Once again, I believe that the peculiar nature of computational explananda 

casts doubts about the viability of such response. Consider again the comparison between 

the instantiation of computational and other mathematical properties. Suppose that 

someone were to propose the following antirealist (pseudo)argument. “The planet Mars”, 

she concedes for the sake of the argument, “may be seen as instantiating the solution to 

certain differential equations, because of a relation of structural isomorphism between the 

values of the relevant mathematical variables and the spatial positions of the planet 

(relative to a frame reference) at different times. But”, she continues, “what if we are 

instead interested in the temperature of the planet as time goes by? Shouldn’t we rather 

say that the planet instantiates this other function?” Our antirealist thereby concludes that 

the notion of instantiation of mathematical properties is interest-relative. As a 

consequence, she argues, knowledge about the mathematical properties instantiated by a 

physical system is vacuous; hence it is not knowledge at all. 

 Before saying what is obviously wrong with this antirealist pseudo-argument, let 

me point out that it’s structure is identical to that of the objection I am raising against 

Piccinini’s response. The “perspectival take” on mechanistic description discussed by 

Craver applies just as well to the general case of the instantiation of any mathematical 

property. Why is it then that one doesn’t find in the literature similar arguments to the 

effect that the instantiation of mathematical properties is a “perspectival affair”?  

I think the crucial asymmetry is this. The vocabulary of sciences like physics, 

chemistry and biology, unlike that of computer science, purportedly refers to natural 

entities and natural properties, i.e. to entities and properties that cut nature at its joints, as 

someone puts it. Although the notions of natural entity or natural property are far from 

being clear, what it clear enough is that these entities and properties do not require an 

observer to be instantiated. In particular they do not require to be represented to be 



thought of as real. To be sure, if there were no representational properties instantiated in 

the universe, no one could know about these entities and properties, but this is an 

epistemological, not a metaphysical point. So it is that the planet Mars can be seen as 

instantiating certain mathematical properties whether or not anyone represents either 

Mars as an entity or those mathematical properties. So it is also that a particular heart 

instantiates certain functional properties whether or not anyone represents that entity as a 

heart and whether or not anyone represents those properties as functional. If your heart 

has a role in the capacity of your organism to maintain itself far from thermodynamical 

equilibrium (i.e. to prevent it, ceteris paribus, from dying), this is a matter of objective 

fact. The explanandum, in this case the capacity of an entity to maintain itself far from 

thermodynamical equilibrium, is an objective, observer-independent phenomenon, albeit 

a multiply realizable one.  In all these cases, resorting to explanatory contexts is a sound 

move to rebuke observer-relativity pseudoarguments like the one proposed above: the 

chain of functional descriptions in these cases is in fact interrupted by the non-functional 

description of some capacity (the explanandum) that the whole mechanism is observed to 

possess.   

 The chain of functional descriptions, in the case of computational mechanisms, by 

contrast, does never appear to come to an end. What is the overall capacity of a 

computing mechanism? Presumably it is some computational capacity, i.e. the capacity to 

compute something. Thus, unless one has independent reasons for believing that 

representational properties do not play a role in the individuation of computational ones 

(in which case one wonders what genuine explanatory role the computational hierarchy 

might have to play), one can be accused of trying to ground the notion of implementation 

on the very same notion of implementation. 

 Piccinini, however, has a subtler, more interesting response to the same worry. 

Functionalist accounts, he concedes, would indeed be too liberal if we construed 

functions in a narrow sense. If we excluded all reference to distal properties from the 

individuation of the relevant functions, that is, then weak antirealist arguments (like 

Shagrir’s) would be sound: functional descriptions would indeed underdetermine the 

computations actually implemented by a system. But, thinks Piccinini, if we allow for a 

broad construal of functional properties, such liberalism could be avoided.  



As it is certainly true that broad individuation of functional properties does not entail 

individuation based on broad content, like Piccinini rightly points out, this is a very 

promising move. I think, however, that such move does not warrant the assumption that 

broad non-semantic functional properties can be safely applied to the individuation of 

computational ones. Remember, in fact, that the troubles with functional individuations 

of computational properties that we have discussed above have to do with the need to 

comply with conflicting desiderata. None of these, I shall argue, rely on a narrow (as 

opposed to broad) individuation of functional properties.  

I have argued that neither purely structuralist nor purely functionalist accounts of 

implementation succeed at restricting the class of candidate label bearers of 

computational states (CLB henceforth) so as to avoid vacuousness or excessive 

liberalism. The analysis of their common pattern of failure allows us to formulate the 

following desiderata for an adequate realist account of implementation.  

 

1. If the account is to solve the problem of absolute liberalism, the class CLB must 

be restricted so as not to contain any possible physical magnitudes (or groupings 

of physical magnitudes). 

 

2. If it is to solve the problem of relative liberalism, for any subclass of CLB whose 

elements belong to the same type of physical magnitudes, the restriction must be 

such as not to contain all arbitrary groupings of them. 

 

3. Finally, if the account is to satisfy the principle of multiple realizability, the 

restriction must not constrain the elements of CLB to belong (a-priori) to some 

specific kind of physical magnitudes (or groupings thereby). 

 

As I shall argue, the difficulty encountered by functionalist accounts does not depend 

on the assumption that functional properties be construed as narrow. The intuition that 

broad functional properties may serve the purpose of individuating actual 

implementations, thus rendering semantic properties redundant, stems from the 

observation that, if the individuation of computational properties is allowed to make 



reference to properties that lay in the environment, then the fact that computational 

theories make essential reference to distal stimuli would not entail that these must be 

represented.  

 According to Wilson, for example, the problem of absolute liberalism can be blocked 

by making reference to the particular loci where programs are supposed to be stored. “In 

response to the grand epistemological, scepticism-mongering question, ‘Of the infinite 

number of programs that a computer could be implementing, how do you know that it is 

implementing this program?’, we say: ‘It implements this one because it is this one that is 

encoded on the disk we inserted.’ (And since a physical disk is simply one type of 

storehouse for a program, we could replace reference to a physical disk here by reference 

to anything else a program is stored on.)” [Wilson (1994): 360, my emphasis] 

The problem, here, just as with narrow conceptions of implementation, is that unless 

we further assume that all the potential “encodings” of the program share some (first-

order or second-order) properties, we are not in the position to specify where in the disk 

the program is encoded. Of course Wilson’s broad constraints suffice to say that an object 

can be used as a computer, but, I argue, not to say that it is being used as such.  

I think that the crucial misunderstanding in these attempts (narrow or broad) to block 

unwanted models, consists in supposing that encodings can be individuated without 

making reference to their representational capacities. As Millikan notes, “[i]t does not 

help to be told that inner representations are things that have representing (indicating, 

detecting) as their function […] unless we are also told what kind of activity representing 

(indicating, detecting) is. [Millikan (1989): 282-283] 

The standard notion of “encoding”, although this is rarely stated explicitly, is based 

on sheer factual correspondences. The mere fact that there are factual causal 

correspondences between some properties of the disk and properties in the proximal 

environment of the processing unit, is implicitly supposed to be sufficient for 

individuating the encodings themselves (thereby individuating the program stored). But it 

is widely acknowledged that there are just too many factual correspondences between 

everything and virtually everything else. The mere presence of factual correspondences is 

only sufficient to claim that a given state has the potentiality to be treated as an encoding. 



Similarly, a broad functional construal of Marr’s theory of vision would count some 

distal features of the environment as parts of the functional architecture. Thus, describing 

a system as implementing Marr’s algorithm would require a (functional) description of 

distal stimuli. But if the only constraint that we place on these distal features of the 

environment is that they be in factual correspondence with the proximal stimuli 

(themselves identified functionally in non property-specific ways), then we have placed 

no constraint at all. In fact, because of Newman’s problem, there will always be, out 

there, some (unspecified) physical properties that are in factual correspondence with the 

(unspecified) proximal ones. The broad functional descriptions, in the case of Marr’s 

theory of vision9, for example, would have to individuate the intended relation between 

the boundaries of distal objects and the pattern of intensity of the light reflected by them. 

But could such individuation be possible if the potential encodings of these distal 

mathematical properties did not actually encode them? What if there are proximal stimuli 

that are in factual correspondence with other, non intended, distal properties, without 

encoding them?  

“[A] wide function of an internal state”, concedes Piccinini, “might be to co-vary 

with an external variable. Under some theories of content, this is the same as representing 

that variable. If so, it may seem that wide functional individuation is the same as 

individuation by wide content, and that the functional account of computational 

individuation collapses into the semantic account.” [Piccinini (2008): 221] 

Piccinini has two responses to this worry. Here we will only discuss the first one, as it 

is relevant in assessing the viability of functionalist accounts. The second one will be 

dealt with in the next section. In the first place, Piccinini points out that there is a prima 

facie asymmetry between individuation by wide content and wide functional 

individuation, as to how wide they may be required to be. While the individuation by 

wide content typically requires that distal stimuli be represented, “the functional 

properties that are relevant to computational individuation, even when they are wide, […] 

have to do with the normal interaction between a computing mechanism and its 

                                                
9 Se the next section of this paper for a discussion of the philosophical implications of Marr’s theory of 
vision. 



immediate mechanistic context via its input and output transducers.” [Ibid.: 221. My 

emphasis]. 

I think that Piccinini is right that individuation based on broad content cannot be 

inferred by broad functional individuation alone. But, I argue, the scope of the objection 

at issue here cuts across the broad vs/ narrow characterization of function. The existence 

of unwanted models is due to the absolute liberalism in the choice of the candidate label 

bearers. If the individuation of computational properties is allowed to range over 

properties that are instantiated outside the skull, the problem of absolute liberalism is 

brought out in the environment too. The general problem is that the procedure of 

Ramseyfication of theoretical computational statements, short of further constraints that 

ensure that they latch onto their intended models, is going to be exposed to the problem 

of liberalism, whether the candidate referents of the Ramseyfied properties are allowed to 

range over distal properties or not, regardless of how “distal” these properties are taken to 

be. 

It is revealing that, to corroborate the thesis that the immediate mechanistic 

environment suffices to place the relevant constraints, Piccinini mentions McCulloch and 

Pitts 1943 paper: “the main piece of empirical evidence that was originally employed by 

McCulloch and Pitts (1943) to justify the first computational theory of mind was the all-

or-none properties of neural signals, and those properties were originally discovered 

and identified to be functionally significant by studying the interaction between neural 

signals and muscle fibers.” [Ibid.: 222] 

  While this is certainly true as a historical fact, it is far from clear, as we have 

discussed, that the all-or-none properties of neural signals suffice to provide us with 

empirical evidence of their functional role.  

Another way to expose the indifference of the problem of liberalism to wide or 

narrow characterizations of function is the following. Wide functionalist accounts include 

behavioural and sensorial data in the functional architecture, in the hope to block 

unwanted implementations. But if the principles of functionalism are to be upheld, the 

properties of being “behavioural” or “sensorial” must themselves be functionally 

individuated, and this requirement brings us back to the same problem that broad 

functionalism was devised to solve: either we restrict the domain of possible 



implementations, thus falling prey of the chauvinism horn of the dilemma, or we fall prey 

to the opposite horn, counting as “behavioural”, or “sensorial”, also what is clearly not 

behavioural or sensorial. As Skinner once put it, “[t]here must be defining properties on 

the sides of both stimulus and response or the classes will have no necessary reference to 

real aspects of behaviour” [Skinner (1938): 35]. The problem is that these “defining 

properties” cannot be themselves functionally characterized, on pain of vacuousness. We 

have seen how this is the case, for example, with functional characterizations of 

encodings.  

In sum, purely functionalist accounts of implementation will be dogged by the spectre 

of liberalism, wherever one chooses to place the relevant candidate domains of 

implementation.    

In the next section I consider the third category of accounts of implementation, that of 

semantic accounts, arguing that it is the only one that complies with the desiderata of 

computational realism.       

           

5. Semantic accounts of implementation 
 

There are at least three theses that deserve the qualification of semantic accounts of 

implementation. The first one - which I will call Fodor’s thesis (FT henceforth) - is the 

conjunction of the following two claims: 

 

FT1:  Computations are defined over representations. 

FT2: The semantic properties of the representations over which computations  

are defined do not have an impact on the individuation of computational states.  

 

FT1 must be understood as the claim that all computational states, qua computational 

states, possess semantic properties (i.e. that they are representations). In other words, 

given the information that a physical state (or grouping of physical states) implements a 

computational state, it is analytic to infer that it possesses semantic properties, i.e. that it 

represents something.  



FT1 is not committed to any specific kind of representation. In particular it is not 

committed to the claim that computational states are (analytically) conceptual 

representations. Part of the original allure of computational theories was their alleged 

capacity to vindicate folk-psychological explanations. To this purpose, conceptual 

representations become a necessary ingredient. But most current computational theories 

are used to explain cognitive capacities that only require that the implementing system 

possesses perceptual representational capacities, without presupposing that the system 

possesses also the concepts that would feature in a description of the content of these 

representations.  

FT2 should be understood as the claim that the particular content of the 

representations over which computations are defined does not have an impact on the 

individuation of computational states, or on their causal properties. Thus, according to 

FT, computational states are individuated by their physical (non-semantic) properties, and 

act upon each other in ways that depend solely on these.  The locus classicus of FT is 

Fodor’s contention that “computational processes are both symbolic and formal. They are 

symbolic because they are defined over representations, and they are formal because they 

apply to representations, in virtue of (roughly) the syntax of the representations.” [Fodor 

(1980): 64]. 

The second thesis that goes under the umbrella of semantic accounts of 

implementation - call it Shagrir’s thesis (ST) - is a conjunction of FT1 with the following 

two claims: 

 

ST1: The contents of the representations over which computations are defined  

have an impact on the individuation of computational states. But… 

ST2: It is only the formal, logical or set-theoretic semantic properties that have  

an impact on the individuation of computational states. 

 

Formal semantic properties are second-order properties of semantic ones. Consider, 

for example a representation of the concept black dog. Among its semantic properties, is 

its content: this is, say, the extension of the concept. But a representation of the concept 

black dog has also the (second order) property of representing the intersection of two 



sets: that of dogs with that of black things. Second order, formal properties of the latter 

kind are shared by many representations that do not share any first order semantic 

properties. It is this kind of properties, and never the former kind that, according to ST2, 

has an impact on the individuation of computational states. In what follows we shall refer 

to the former kind of semantic property as first order content, and to the second kind 

(formal semantic properties) as second order content. 

The third semantic thesis that we shall consider is Burge’s thesis (BT). It is the 

conjunction of FT1, ST1 and the following claim: 

 

BT1: It is the first-order contents of the representations over which computations are 

defined that have an impact on the individuation of computational states. 

 

Let me summarize this articulation of semantic accounts of implementation. All the 

theses mentioned share the assumption that computations are defined over representations 

(FT1). It is because of this that they all deserve the qualification of semantic accounts, 

and it is this thesis, we shall see, that can be exploited to block Newman’s problem. ST 

and BT share the further assumption that the contents of the representations have an 

impact on the individuation of computational states (ST1), but they disagree as to 

whether it is first-order content (BT) or second-order content (ST) that has such an 

impact.  

Let us now consider in turn the reasons offered in support of each of these theses. The 

main reason for endorsing FT1 stems from the observation that computations are always 

computations of something, as representations are always representations of something: it 

doesn’t make any sense to talk of a computation without assuming that there is something 

that is being computed; as it does not make any sense to say that an entity is a 

representation without assuming that there is something that it represents.  

Another way to express this intuition is to say that computations are typically 

conceived of as a kind of information processing. Although there is no agreement as to 

what carrying information amounts to, it is undisputed that information must be 

information about something. Representations have the essential property of being about 



something, and are thus the most natural candidates as bearers of computational 

properties. 

It is not trivial to turn the above considerations into an argument in favour of FT1. 

The following, though, is a promising candidate: 

 

1. Computations are individuated by the functions computed 

2. Functions are specified semantically, therefore 

3. Computations are (at least in part) individuated semantically. 

 

It is worth spending a few words about the premises of this argument. Computations, 

we said, are always computations of a function. To describe the function computed by a 

system, is to characterize that system in terms of what it “does”. Consider for example 

Marr and Hildreth's (1980) description of what the retina “does” when performing the 

task of edge detection. According to the authors, the edges of an image are detected by 

signalling sharp intensity changes. These, in turn, are signalled by zero-crossings of the 

two-dimensional intensity arrays that are input to the retina (i.e. points where the 

intensity functions change their signs). Thus, the idea is that the retina receives as inputs 

the intensity arrays I(x,y) and computes the positions of their zero-crossings. “I have 

argued”, says Marr, “that from a computational point of view [the retina] signals  

(the X channels) and its time derivative  (the Y channels). From a computational 

point of view, this is a precise characterization of what the retina does.” [Marr (1982): 

337, my emphasis].  

So, according to the authors, the retina “solves” the problem of edge detection by 

implementing the function . The authors are well aware that the retina “does” a 

whole lot of other things, but what counts is whether what the retina is seen as doing is 

also relevant for a computational description of it. “Of course”, continues Marr, “[the 

retina] does a lot more - it transduces the light, allows for a huge dynamic range, has a 

fovea with interesting characteristics, can be moved around, and so forth. What you 

accept as a reasonable description of what the retina does depends on your point of view. 

I personally accept  as an adequate description, although I take an unashamedly 

information-processing point of view.” [ibid.]  



Thus Marr thinks that what individuates  as an appropriate description of what 

the retina does (among all the other functions that it might instantiate), is the fact that its 

outputs (the X and Y channels) are reliably correlated with salient features of normal 

environments, such as the sharp boundaries of distal objects. The outputs of the retina, in 

other words, carry information about the environment; and if it wasn’t for this, it would 

not be possible to take  as a “precise characterization of what the retina does.” 

Does the above example (or similar ones) provide support for FT1?  There are three 

opinions about it. According to the first one, perhaps the majority view, it does. Thus, for 

example, Burge, Peackoke, Davies, Churchland, Senjowsky and Shagrir, share the 

opinion that the above argument supports the thesis that computations are operations on 

representations. They disagree as to whether the content of these representations have an 

impact on computational individuation; and those who think that it does further disagree 

about which particular features of content (first- or second-order, broad or narrow) have 

such an impact. Here, however, our concern is evaluating FT1 in its own right.  

The second stance about the argument, advocated for example by Egan and McGinn, 

is that these examples show that computational states can be seen as essentially 

representational only in an “unusual way”. Egan thinks, for example, that the retina can 

be seen as implementing the function  whether or not its inputs and outputs carry 

information about distal stimuli. In some sense, the intended interpretation of the states of 

the retina is mathematical. “[T]he theory of the computation is intentional in the 

following sense: it does specify an intended interpretation of a computational process - 

the intended interpretation is mathematical. The topmost level of a computational theory 

[Marr’s “computational level”, or Newell’s “semantic level”] characterizes the system as 

computing a series of functions defined on mathematical entities. I am quite happy to say 

that a computational theory is intentional in this rather unusual sense.”  [Egan (1995): 

187, footnote 8] 

As we have discussed at length in the previous sections, however, because of 

Newman’s problem, mathematical representations succeed at representing something 

(hence succeed at being representations at all), only if constraints are placed on the 

interpretations of the symbols, over and above the existence of isomorphic mappings. 

Thus, the knowledge that the retina implements the function , short of further 



specifications, is no knowledge at all. But, as we have discussed, the kind of constraints 

that are typically adopted in standard mathematical representations of physical properties 

are not allowed in the individuation of computational ones. As a consequence, I argue, 

there is no sense in which, short of further constraints, the retina could be seen as 

“representing” that mathematical structure. 

Finally, there are authors who think that these examples do not provide any evidence 

whatsoever for FT1. Piccinini, for example, thinks that these alleged arguments from the 

semantic specification of the computed functions commit the following fallacy.  It may 

be conceded, the counterargument goes, that computations are defined by the functions 

computed. But functions can be individuated in two ways: as defined (semantically) over 

the contents of the inputs and outputs that enter the computations (e.g. numbers, when the 

function computed is an arithmetical operation); or over the strings of inputs and outputs 

themselves (e.g. the numerals). The latter, according to Piccinini, are strings of symbols 

individuated by the physical types to which they belong, independently of the content that 

they may be seen as having, or indeed independently of whether they do have a content at 

all. The characterization that is relevant for individuating the functions computed, thinks 

Piccinini, is that based on symbols, not that based on their putative content. 

Now, Piccinini is certainly right that a function can be defined over the inputs and 

outputs themselves, but this is not a different characterization of the same function: it is a 

different function altogether. This is true regardless of whether the arguments of the latter 

function can be further seen as representing those of the former one. If FT1 is true, the 

individuation of the function defined over the strings of inputs and outputs requires that 

the strings of symbols be themselves represented. Thus Piccinini’s contention that the 

function defined over the strings of input and output digits does not require that these be 

themselves represented, begs the question against FT1.  

The point I am making can be better appreciated by considering the following 

example. There are computations that are not amenable to a straightforward semantic 

interpretation. One such computation is represented by the following machine table10: 

 

                                                
10 The discovery of this algorithm is due to J. Buntrock and H. Marxen. 
 



 @ 1 

Q1 1, q2, R @, q4, L 

Q2 1, q3, L      1,  q4, R 

Q3 1, q1, L      1,  q3, L 

Q4 1, h,  R      1,  q5, R 

Q5 1, q1, R   @, q2, R 

 

The input architecture of this machine only possesses two symbols: @ and 1. Its 

internal structure comprises only five states: q1, q2, q3, q4, q5.11 If started in state q1 on a 

blank tape, in spite of its simplicity, the machine has been proved to halt only after 

23,554,764 steps. Considering how simple the machine is, this result is rather 

remarkable! What interests us here is that this machine computes a function that appears 

to have no straightforward interpretation. What could 1 and @ be systematically 

interpreted as referring to, in order for the computation to make any sense? Piccinini has 

argued that cases like this prove that FT1 must be false. If there are machines whose 

input architecture is not amenable to any interpretations, the thesis that inputs and outputs 

must be representations is reduced ad absurdum. If 1 and @ in the example above cannot 

be interpreted as representing anything, how could they be representations at all?  

Now, because the symbols that feature in the table above have no possible 

interpretation, the function that individuates the computations must be that defined over 

input- and output-types: true. Piccinini exploits this fact to argue that there are cases 

where input- and output-types are not (and could not be) representations. In spite of the 

absence of representations, the argument goes, the computation above can be 

individuated and implemented, hence FT1 must be false.  

But, I argue, if you did not “see” that the tokens “@” and “1” that you have just read 

in the table above, are intended to “refer” to different input- and output-types, the 

computation would not be univocally individuated. Unless we presuppose that FT1 

(which is the thesis at stake in the argument) is false, in fact, it can be argued that the 

only way to fix an intended model for the realization of the computation is by deploying 

                                                
11 The symbols R and L refer to the familiar actions of moving the read/write head one cell to the right or 
one to the left respectively.  



semantic properties that are identical (or isomorphic) to the ones you have just deployed 

to interpret the machine table above as that machine table. It does not suffice that you are 

able to type-identify @’s and 1’s by their shape. The expression “the shape of @”, by 

itself, in fact, is insufficient to individuate any particular feature of that mark of ink. You 

are also able to type-identify the same two tokens according to categories that cut across 

the ones to which @’s and 1’s belong in the intended interpretation of the computation. 

For example, both @’s and 1’s are equally tall marks. If the relevant discriminatory 

criterion were height, the algorithm specified by the table would be reduced to computing 

the identity function. Real, physical computing systems stand in exactly the same position 

as the abstract, inert table above: what a system does, from a computational point of 

view, can only be individuated by bringing in semantic considerations.  

Similarly, a description of the process of arithmetical addition presupposes a 

representation of the relevant mathematical symbols (the numerals, the sign “+”, etc.), 

over and above the algorithm to be implemented. It is far from obvious that we could 

ever perform an addition if we did not have representations of these symbols. Just as an 

operation over numbers (1, 2, … etc.) requires that we manipulate the names of these 

numbers (“1”, “2”… etc.), an operation over the numerals requires that we manipulate the 

names of these numerals.12   

The crucial role played by representations in fixing the relevant constraints can be 

appreciated by noting that there is no matter of fact as to whether two tokens of a want-

to-be symbol belong to the same type or not. Do the tokens “2” and “2” belong to the 

same type or to different types? This question, if we are not allowed to bring in 

considerations about our representational capacities, has no definite answer. If they are 

tokens of the same kind, they certainly are no tokens of the same natural kind!  

The functionalist intuition is that it is the computing mechanism which “uses” them 

that determines whether they belong to the same type or not. But what the mechanism 

does, in the relevant sense, depends in its turn (in part) on what types of symbols are 

input to and output from it. So, depending on how our representational capacities carve 

the input and output domain (call it the input architecture), the same physical system will 

                                                
12 Indeed it could be argued that we acquire the representations of the numerals, and learn to manipulate 
them, long before we come to understand what the numerals are intended to represent. 



be seen as implementing different computations. It is the input architecture, in other 

words, that determines (at least in part) what the computing mechanism does. But the 

relevant properties of the input architecture do not supervene on non-representational, 

physical properties alone: they supervene on physical properties only if representational 

capacities are allowed to play their individuative role.     

Let me conclude our discussion of the virtues of FT1 with a summary. Arguments in 

favour of FT1 are, I believe, not definitely conclusive. It is in fact possible that some 

other property (other then representational ones), might turn out to serve the same 

individuating role. Our analysis, however, allows us to draw the following conclusions: 

 

1. The non-semantic individuating properties proposed in the literature are not 

viable. Both purely structural and purely functional properties, I have argued, 

do not comply with the relevant desiderata. 

2.  A-priori arguments against the semantic individuation (like the one from 

uninterpretable Turing machines), are inconclusive.  

 

Arguments in favour of FT1 sometimes proceed from the claim that content has a role 

in the individuation of computational states: as only representations have contents, if 

contents impact the individuation of computational states, computational states are 

essentially representational (FT1). As I said, according to both ST and BT the content of 

representations has an impact in the individuation of computational states (ST1). 

Arguments in favour of ST1 (both those according to which it is first-order content and 

those according to which it is second-order content that matters) proceed from the 

observation that computational explanations make an irreducible recourse to content.  

Burge, for example, has argued that Marr’s theory of vision makes essential reference 

to the (distal) content of perceptual representation.  His aim was to show that the theory is 

not individualistic (that the content in question is broad, rather than narrow). Here, 

however, we are only interested in the part of the argument that purports to show that 

content (rather then other properties of the input architecture) has an impact in the 

individuation of computational states. According to Burge, “[Marr’s] theory makes 

essential reference to the subject's distal stimuli and makes essential assumptions about 



contingent facts regarding the subject's physical environment.” [Burge (1986): 29]. The 

information carried by the relevant representations is individuated by these distal stimuli. 

If these were different, Burge continues, the information carried by these representations 

would also be different, even with no variation in the internal physical processes of the 

implementing system. He thereby concludes that Marr’s computational theory explains 

the relevant behaviour only if the individuation of the postulated (computational) 

structure is constrained by the (broad) contents of the proximal stimuli. 

Various authors have objected (correctly, I think), that while it may be that (broad) 

content is a necessary ingredient in accounting for the explanatory capacity of Marr’s 

theory (Butler), or for its intuitive understandability (Egan), this does not suffice to show 

that such content has an impact on the individuation of the computational structure 

implemented. The locus classicus for testing intuitions about this issue is Davies’ 

example of the Visex system.  

The Visex is a (fictional) component of a visual system. As the theory is concerned 

with explaining some particular visual cognitive behaviour, say edge detection, all 

explanations based on it will make reference to some feature of the visual environment of 

the system. Now, suppose that there is a subcomponent of the auditory system, call it the 

Audex, that is intrinsically identical to the Visex (it is a molecular twin of the Visex). As 

the Audex is part of the computational structure of the auditory system, in explaining the 

auditory behaviour of the system, the theory will make irreducible reference to its 

auditory distal environment. Are the Audex and the Visex, under these circumstances, 

implementing the same computation, in spite of the fact that their respective 

representations have different broad contents?  

Burge, in compliance with BT1, answers in the negative: the Visex and the Audex 

implement different computations. Most authors, however, disagree with Burge on this 

point. Egan, we have seen, thinks that the only “content” that computational states need 

be assumed to possess, is mathematical content. Thus, according to Egan, the Audex and 

the Visex implement the same computational structure by virtue of the fact that (by 

hypothesis) they both instantiate the same mathematical functions. While, as I have 

argued, Egan thus places computational descriptions at a level of abstraction that fails to 

achieve an adequate degree of individuation, I think that considering the Visex and the 



Audex as implementing different computations would place the computational analysis of 

the system at the opposite, but equally wrong, level of abstraction. 

It could be conceded that if the Visex was applied, unaltered, to an auditory slot, the 

different nature of the distal stimuli would determine a shift from a description of a visual 

cognitive system to a description of an auditory system, without this implying that the 

system implements different computations in the two cases. A computational theory of 

vision, like Marr’s theory, in fact, need not be taken to be “computational” in the strong 

sense that it appeals solely to computational concepts. What makes of Marr’s theory a 

theory of vision  (as opposed to a theory of audition), in other words, need not be 

anything that has to do with what makes of Marr’s theory a computational theory (see 

Butler 1996). 

In sum, while the above considerations do not rule out (a-priori) that in some cases 

content may have an impact on computational individuation (ST1), they appear to lessen 

the plausibility of the hypothesis that first-order content always does (BT1). 

We are thus left with the last proposal that we wish to discuss: that it is second-order 

content that has an impact on computational individuation. Shagrir, who shares with 

Burge both FT1 and ST1, also thinks that the Visex and the Audex can be seen as 

implementing the same computation. But this, he argues, is the case only if the 

mathematical (logical or set-theoretical) properties of the distal stimuli are taken to be 

identical in the two cases. We have seen that according to Marr’s model of edge 

detection, what the retina does is appropriately characterized by the formula . The 

formula describes the relation that obtains between the (electrical) activity of the 

photoreceptors that input the retinal image I(x,y) and the (electrical) signals that reach the 

edge detectors. But this fact alone, argues Shagrir, does not explain why edge detectors 

carry information about the boundaries of distal objects.  

Indeed, I add, this fact alone doesn’t suffice to prove that the electrical activity of the 

retina implements any computation at all. What is crucial, continues Shagrir, is that the 

mathematical properties in question mirror the mathematical properties of the represented 

items (e.g. the relation between object boundaries and sharp changes in the intensity of 

reflected light). This is not only crucial in accounting for the fact that Marr’s theory of 

edge detection is indeed a theory of edge detection, but it is also crucial in determining 



what the retina does (computationally) in a sense that cuts some ice. The retina, in fact, 

may be seen as having many other implementational capacities. Had the second-order 

content of the representations been different, the retina may well have been seen as 

actually implementing another computation.  

 
 

6. Conclusions 

  I don’t think that there are currently any conclusive positive arguments in favour of 

semantic accounts of implementation. I argue, however, that placing the issue of 

liberalism of implementation in the broader framework of Newman’s problem allows us 

to draw the following conclusions. 

First, the semantic restriction of CLB can be argued to satisfy the general desiderata 

of a theory of implementation: it allows us to block both strong and weak antirealist 

arguments. Strong antirealist arguments, we have seen, presuppose that one is allowed to 

choose as an implementation basis any grouping of states whatsoever, provided that it can 

be mapped onto the relevant logical states of the formal computation to be implemented. 

This often involves gerrymandering the available physical states in “unnatural” ways 

(both Putnam and Searle have exploited this possibility to run their arguments). The 

semantic restriction clearly succeeds at blocking such arbitrary groupings, while 

satisfying also the other relevant desideratum. Recall, in fact, that while the need to avoid 

non-intended models requires (as a necessary but not sufficient condition) that the class 

CLB be restricted so as not to contain all sets of physical magnitudes (or groupings of 

physical magnitudes), the PMR constraint requires that such restriction be not based on 

any particular kind of (first- or second-order) physical property. Restricting CLB to 

entities that possess intentional properties complies with these apparently conflicting 

desiderata. While virtually everything can be used to represent everything else, in fact, 

not everything is actually a representation. Thus, while a semantic restriction of CLB 

does not constrain (a-priori) its elements to share any particular physical property, it 

ensures that at any given moment the extension of CLB be not the whole universe of 

physical magnitudes and groupings of states. This, as we said, is exactly as it should be. 

Notice, for example that the thought experiments of the kind proposed by Putnam or 



Searle would be blocked at their onset by a semantic restriction of CLB. The states of 

Searle’s wall, or Putnam’s microscopic maximal states, in fact, are not candidate label 

bearers (under a semantic restriction), for they arguably do not possess any 

representational property. 

 So, does everything compute (at least) something? According to semantic accounts 

the answer to this question is definitely: no. But can everything be seen as computing 

something? The semantic approach theorist must answer affirmatively to this other 

question, for anything can (in principle) be interpreted one way or other, provided that the 

representational capacities of the observer are sufficient for the task. This is not a 

counterintuitive result. If one day Searle will be able to attach a keyboard and a screen to 

his wall and write his papers with it (which would involve using an as yet unknown, very 

powerful representational apparatus): good for him! Who is going to claim that his wall 

then wouldn’t really implement the Wordstar program? 

As for weak antirealist arguments, the semantic view succeeds at blocking them too. 

Once we focus our attention on the physical systems that actually implement some 

computation, we can further ask whether they compute “too many” ones (relative 

liberalism). This happens when a theory of implementation elicits two or more 

computational ascriptions that entail different (contradictory) predictions as to the 

behaviour of a physical system. Shagrir’s arguments show how semantic considerations 

can block this residual amount of liberalism too. 

That the semantic approach succeeds at blocking both kinds of antirealist arguments 

should not come as a surprise. Both kinds of arguments, in fact, exploit the liberalism 

created by Ramseyfication. Strong antirealist arguments exploit the liberalism created by 

an unrestricted Ramseyfication of computational properties, weak ones exploit the 

residual liberalism due to the Ramseyfication of properties whose extensions are drown 

from different groupings of physical states belonging to a given natural type. The 

semantic restriction “cuts through” the structure of both Ramseyfications, so to speak, 

individuating all and only the relevant extensions of computational properties, while 

complying with the multiple realizability principle.      

A second observation is in order. The proposed diagnosis of the problem of liberalism 

blames the PMR for the proliferation of unwanted models, rather than the discrete (as 



opposed to continuous) nature of digital systems. Of course the discrete nature of 

computational systems makes matters worse as far as liberalism is concerned, for it 

increases the cardinality of the unrestricted set CLB. However, although most 

vacuousness arguments exploit the discreteness of the set of label bearers, such greater 

cardinality should not be held directly responsible, in itself, for the problem of liberalism. 

Even the realization of continuous dynamical systems (e.g. the instantiation of the 

solutions of Maxwell’s equations), we have seen, would be too liberal, if it had to 

accommodate for the unrestricted PMR.   

As I said, it is not possible to prove that only semantic properties can suitably restrict 

the class CLB, the other proposed candidates, unadorned, certainly fail to comply with 

the relevant desiderata. Let me summarize the pattern of their failure.  

Structuralist accounts, on their own, are not even capable of addressing strong 

antirealist arguments. Functionalist accounts are very promising, for they deny the 

principal tenets of structuralist theories, thus blocking a-priori the Newman problem (they 

do not involve Ramseyfying computational properties). If they where to succeed they 

would certainly allow us to avoid (at least) the triviality conclusion that everything 

computes everything. They would also do justice (as Piccinini has extensively argued) to 

the way in which the relevant community of experts individuates computational 

properties. I have argued, however, that a convincing response to the circularity problem 

is wanting.  

Let me now turn to the relation between semantic and other accounts of 

implementation. The semantic hypothesis advertised in this paper by no means entails 

that possessing representational properties suffices for implementing computational ones. 

This is clearly false. Rather, the hypothesis should be stated as follows. If the problem of 

liberalism is to be avoided, a necessary condition for the implementation of 

computational properties is that the inputs and outputs to the candidate implementing 

system instantiate actual intentional properties, whose transformations can be 

systematically subsumed under true (counterfactual supporting) syntactic generalizations. 

The best way to capture such syntactic generalizations may well require the realization of 

functional properties. Moreover, the isomorphisms postulated by structuralist accounts 

will be seen to emerge naturally, when such functional + semantic structures are 



implemented. Therefore, the semantic account should not be construed as alternative to 

structuralist or functionalist ones, but as complementary to them. For example, a 

mechanistic characterization of input devices will have to make an irreducible reference 

to actual semantic properties (those that individuate the encodings). Once the set CLB is 

thus restricted, however, the particular structure implemented may well be individuated 

by a functional or mechanistic description. When such a functional + semantic 

architecture has been individuated, it will be possible to map the implementing label 

bearers onto their abstract counterparts, as prescribed by structuralist accounts. The 

difference is that while purely structuralist and functionalist accounts provide a top-down 

characterization of the relation of implementation (from abstract to concrete systems, via 

Ramseyfication), the semantic account fixes the relevant constraints at the bottom 

(semantic) level, thus securing the ground for the relevant computational abstractions.  

The computational Ramsey sentences will thus be true as a matter of contingent fact, 

as opposed to being true as a matter of logic. This is exactly as it should be: whether 

something is a computing system or not, if computational properties are real, must be a 

matter of contingent fact, not logic. This complementation of the semantic accounts 

would also allow us to do justice to the way in which the relevant community of experts 

individuates computational properties. As Piccinini has argued, this feature, if not a 

desideratum, should be considered as an advantage of a theory of implementation.  

Finally, I have argued, standard a-priori objections raised against a semantic 

restriction of CLB are inconclusive. I have argued elsewhere13 that teleological theories 

of content are particularly apt to enforce a restriction of CLB, but as far as the problem of 

liberalism is concerned, any successful theory of content would be just as suitable to deal 

with the relevant desiderata. In sum, I argue, semantic accounts of implementation are so 

far the best bet on the board.  
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